Motivation

Two large ampilitude motions of methylamine, inversion/wagging
and internal rotaion, are strongly coupled. The band centers of and internal rotation, are strongly coupled. The band centers of
fundamental bands for interal rotation $\left(v_{1}\right)$ and wagging $\left(v_{0}\right)$ ocur a $264.6 \mathrm{~cm}^{-1}$ and $779.6 \mathrm{~cm}^{-1}$, respectively. Earier analyses $[1,2]$ left a number of series in the v_{9} band unassigned (Tabee 1. This probem could resuit trim strong local perturations between the wagging and third and fourth
excited torsional states (Fig. 1 based on Ref. 3) and inadequate bols for searching weak lines in a congested spectrum of a LAV Tholecule. The aim of this work was to extend the assignment to perturbed series of the wagging band in a new high resolution spectrum of methylamine in the region from $640 \mathrm{t} 0960 \mathrm{~cm}^{-1}$ using extensively e LWW software for the LAV molecule.
The LWW software for symmetric and asymmetric top molecules was subject of earier reports (hthp:/lwww.ww.amued
a new version specific for LAV molecules is applied.

Experimental data

The high-resolution spectrum of methylamine has been recorded at the University of Olu in Finland using Bruker IFS-120HR Fourier ransform secctrometer in the range from $640 \mathrm{~cm}^{-1}$ to $960 \mathrm{~cm}^{-1}$ at a pressure of 0.039 Torr with the path length of 3.2 m in the optimized White cell at a emperature of $22^{\circ} \mathrm{C}$. Totat registration time was 69 h 36 min .
The resolution due to MOPL $=0.0012 \mathrm{~cm}^{-1}$. The resolution due to APT $=0.0011,0.0013,0.0014,0.0016 \mathrm{~cm}^{-1}$ and Doppler broadening $=0.0013$.0015, 0.0017 and $0.0019 \mathrm{~cm}^{-1}$ at $700,800,900$, and $1000 \mathrm{~cm}^{-1}$, respectively.
The relative wavenumber precision is one order of magnitude better than the respective resolution.

Symmetryspecies	Earier analyses [1, 2]		Present analysis	
	Max K^{\prime} assigned	Missing series	Max K' assigned	Missing series
A	13	$\mathrm{K}^{\prime}=0,1,2,3,4$	13	K=0
B	17	K' $=0$	18	
E_{1+1}	12	$\mathrm{K}^{\prime}=3$	13	
E_{1-1}	10	$\mathrm{K}=0,1,2$	15	$\mathrm{K}=11$
E_{2+1}	9	$\mathrm{K}=0,1,2,3,4,5$	9	$\mathrm{K}^{\prime}=3$
$\mathrm{E}_{2,1}$	9	$\mathrm{K}=0,1,2,3,4,5$	10	

LWW program for LAV molecules

The LWW software has been developed to be used for molecules with large amplitude motions such as methylamine or hydrazine and it sole in the present analysis was crucial. In the methylamine spectrum it was possible to assign successtilly very weak lines since the LWW making use of the energy fie could predict the lines positions. Great advantage for the series identification is the automatic use of the GSCD. LW diagrams can be displayed simultaneously with the spectra, which helps a lot in the
 ft the appropriated type of branches for a chosen range of K guantum number (Fiq3). The search of strongly perturbed series was greatily facilitated by simultaneous display of Q yype branches together with P and R branches in the $L W$ diagrams (see Fig. 2).

New assignment of the first excited inversion band $\left(v_{9}\right)$ of methylamine

 Newly identified series-The summary of newly assigned branches is given in Table 1 .
The $K=0$ series of B symmetry species have been identified, which is the most important result. They are strongly perturbed and thus shifted from the predicted frequencies as far as $4 \mathrm{~cm}^{-1}($ Fig. 2).
From the low K series of substantial intensity unassigned in earier papers, the $K=0,1,2$ see of series of the $E_{1,1}$ symmetry and the $K=3$ set of series of the E_{1+1} symmetry have also been found. They are slightly perturbed as show in Table 2 .
The entire set of weak or very weak series of $\mathrm{A}, \mathrm{E}_{2+1}$ and $\mathrm{E}_{2 \cdot 1}$ symmetry species has been identified.
Each set of intensive series (of B, E_{1+1} and E_{1}, symmetry has been completed with the series ${ }^{\mathrm{P}} \mathrm{R}$ and FP . Some weak series of low K values have been completed with the $P R$ and $R P$ transitions.

- For low K values ($K=0$ and 1) transitions of mixed types have been also observed: $E_{1+1} \leftrightarrow E_{1-}$

Most series extend as far as $J=40$ comparing to 30 in earier papers

- In toal, the present number of assigned lines in the inversion band is about 13000 (see Fig.4) whereas earlier there were about 5000 lines identified [1].

2. Still unassigned lines

There are still problems with finding three sets of series: $K^{\prime}=0$ for A symmetry, $K=11$ for E_{1-1} and $K=3$ for E_{2+1} (Table 1 . The series of A and E_{2+1} symmetries are of low intensities and if they are shifted (probably are), it is difficiult to idenitif hem. For the $K=11$ series of the E_{1-1} symmetry, it is possible that the lines are perturbed since the series for higher K values have been identified.

Fig. 3.
softwar

Each rotational transition in a branch is abeled with the vibrational number, J and K rotational numbers, and symmetry species.

Plans

1) All assigned experimental data will be fit globally using a new model for two interacting states, $v_{9}=1$ and $v_{15}=3$ or $4[3]$ 2) Other bands belonging to the methylamine spectrum will be analyzed in a systematic wa

References
[1] M. Kreglewski, F. Winther, J.Mol.Spectrosc. 156, (1992) 261-291竍 [22]. Sztraka, S. Alanko., M. Koivusaari, J. Mo. Structure 410-411
[3]।. Gulaczyk. M. Kreglewski. J. Mol. Spectrosc. 256 (2009) $86-90$

Table 2. The perturbed series in the inversion band.	
The series	Shit $\left[\mathrm{cm}^{-1}\right]$
$\mathrm{K}^{\prime}=0$ (B)	4.0
$\mathrm{K}^{\prime}=6\left(\mathrm{E}_{1-1}\right)$	1.5
$\mathrm{K}^{\prime}=13\left(\mathrm{E}_{1-1}\right)$	1.0
$\mathrm{K}=14$ (B)	0.8
$\mathrm{K}=14\left(\mathrm{E}_{1-1}\right)$	0.4
$\mathrm{K}^{\prime}=3\left(\mathrm{E}_{1-1}\right)$	0.2
$\mathrm{K}=11(\mathrm{~A})$	0.2
$\mathrm{K}=12\left(\mathrm{E}_{1+1}\right)$	0.2
$\mathrm{K}^{\prime}=3\left(\mathrm{E}_{1+1}\right)$	0.2
$\mathrm{K}^{\prime}=2\left(\mathrm{E}_{2,1}\right)$	0.1

