

Reanalysis of the Symmetric Amino Wagging Band of Hydrazine

I. GULACZYK, W. ŁODYGA and M. KREGLEWSKI

Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland

Motivation

The aim of this work was to reassign the experimental data of two states of hydrazine being in a strong Fermi resonance. the symmetric, v_{e_1} and the third excited torsional, $3v_7$, using the LWW (Loomis Wood for Windows: http://www.lww.amu.edu.pl; poster J25) software, and next to fit these states simultaneously. The band centers for these bands are located at 795 cm⁻¹ and 860 cm⁻¹, respectively. The program written to deal with the perturbation is based on an effective rotational Hamiltonian described earlier (I. Gulaczyk et al. / J.Mol. Spectrosc. 241 (2007) 75-89).

Matrix elements for Fermi resonance between vibrational states $\langle \Gamma; v'; K'; J | \hat{W} | \Gamma; v''; K''; J \rangle$ $\Delta K = 0$ operators containing: wh_n , wq_n

for K=1 operators containing: wf, for K=2 operators containing; wd. $\Delta K = 2$ operators containing; wf., wq. $\Delta K = 4$ operators containing: wd, wp, $\Delta K = 1$ operators containing: wr_{n+} , wr_{n-} , ws_{n+} , ws_n Γ- symmetry of the wagging-torsion-rotation state v' - symmetric amino-wagging state (v_e) v" - third excited torsional state (3v7)

ԱՅՑՐԱ ԾԾՅԵՆՈՇՆԱ

Phenomenological Effective Operator for a coupling between wagging-torsion-rotation states

- $+ wd_{n} \left(J_{+}^{4} + J_{-}^{4}\right) + wp_{n} \left[i\left(J_{+}^{4} J_{-}^{4}\right)\right] \\ + \left[wr_{+}J_{+} + wr_{-}J_{-}\right] + \left[ws_{+}\left(J_{+}J_{+} + J_{+}J_{-}\right) + ws_{-}\left(J_{+}J_{-} + J_{-}J_{-}\right)\right]$
- n = 1 Parameters involving no tunneling, i.e. ordinary
- n = 2 Parameters involving inversion transition of both NH₂ groups.
- n = 3 Parameters involving internal rotation tunneling through the trans barrier.
- n = 5 Parameters involving inversion of one NH₂ group. n = 7 Parameters involving internal rotation and inversion of one NH₂ group.
 - **Experimental data**

The Fourier transform high-resolution infrared spectrum of hydrazine has been recorded at the University of Paris. The spectrum has been recorded in the range from 729 cm⁻¹ to 1198 cm⁻¹ at a pressure of 0.5 Torr with a 10-m-pathlength white cell at a temperature of 20°C. The resolution of the spectrum is about 0.002 cm-1 and the relative wavenumber precision is one order of magnitude better.

- $\hat{W} = \sum_{n=1,2,3,4,5,7} wh_n + wf_n (J_+^2 + J_-^2) + wg_n [i(J_+^2 J_-^2)] + wq_n J_-$
- asymmetric rotor parameters.

- n = 4 Parameters involving internal rotation and inversion of both NH₂ groups.

Analysis of the symmetric inversion band of hydrazine (v_s)

- The y_{c} band is strongly perturbed through a Fermi resonance with the third excited torsional state. $3y_{c}$ (Fig. 1), Generally, the $3y_{c}$ is too weak to be directly observed. However, because of the resonance some intensity could be borrowed from the v, inversion band. Indeed the series of the B \leftarrow A symmetry of the 3v₂ band (K= 3 to 9 and J=<25) were found. The E \leftarrow E series could not be seen. The A \leftarrow B series are not involved in the Fermi resonance and none of the series of these symmetry could be observed in the 3v, state.
- 2. Estimation of the parameters for 3v-

1. Fermi Resonance

- From the inversion torsional potential function (W. Łodyga, M. Krcglewski and J. Makarewicz, J.Mol. Spectrosc. 183, 374-387 (1997)) the energy and torsional and inversion splittings for the 3v, state were calculated. These values and extrapolated parameters from the v, and $2y_{-}$ were then used for the initial estimation of the parameters for $3y_{-}$ in the effective Hamiltonian.
- 3. Reassignment of the symmetric state using a Loomis-Wood for Windows software (LWW program) The LWW program (Fig. 2) has been used for the first time for the LAV molecule The individual rotational lines of the band previously
- labeled by the Loomis-Wood program from Giessen have been reassigned. Some new lines were added to the series and the assignment was confirmed through the ground state combination differences. 4 Global fit
- The global fit for all K' values (from 0 to 10 for the symmetric wagging and from 3 to 9 for the third torsional) gave the standard deviation of 0.019 cm⁻¹, and the results are shown in Table 1.
- 5. Local fits
- Satisfactory fits for individual K' values (from 3 to 8 for both states) were carried out. In Table 2 obtained effective parameters are given for each K' value separately.
- Final conclusions
- There are two possible explanations of the significant difference between global and individual fits (Fig. 3). Firstly, the ve band can be perturbed by other "dark" states. Secondly, there might be problems with the effective Hamiltonian.
- Anyway, about 5200 transitions of the ve (for all symmetry species) and 3v, (only A and E) have been analyzed and they are presented in Fig. 4.
- The LWW program appeared extremely useful, particularly through automation of the GSCD procedure and easy transfer of data.

Table 2. Effective parameters of N₂H₄ for the symmetric wagging band and the third torsional band (J≤25).

			1	ĸ					
	3	4	5	6	7	8			
B (MHz)	23978.7(13)	23971.0(11)	24002.4(12)	23979.1(15)	24054.5(23)	23999.53(46			
B-C (MHz)	160.8(79)		-1335(10)	-1464(25)	-1579(92)				
D _J (MHz)	0.049753(91)	0.05767(18)	0.09412(46)	0.06391(12)	0.177(10)	0.0917(14			
H _{2V} (MHz)	-16155(1100)		698(2)						
H _{2J} MHz)	6.01(45)								
H _{3TV} (MHz)	21589(1700)	-7267(560)	-91069(13)	-69639(16)	-85744(75)	-187062(69			
H _{3TJ} (MHz)	1.26(58)	3.6(16)	25.35(56)	16.02(33)	71.3(12)	1014(11)			
H _{STV} (MHz)	-82581(740)	-64622(1300)	-54944.4(73)	-71238.3(37)	-59430(81)	-124190(36			
H _{STJ} (MHz)	1.75(60)	7.19(78)			-10.23(37)				
H _{SJJ} (kHz)	-0.7690(49)	0.134(11)			-10.23(37)				
v_E (cm ⁻¹)	795.821(44)	794.91(04)	795.42852(10)	795.53611(14)	795.47848(42)	795.5212(2			
Q ₅ (MHz)					-436.1(38)				
B (MHz)	23459.4(50)	23643(19)	23842.3(17)	23860.6(21)	23793.1(42)	23848.0(1)			
B-C (MHz)			684(18)						
D _J (MHz)	0.0588(15)	0.071(10)	-0.0269(11)	0.0556(13)					
H _{2V} (MHz)	95357(5500)								
H _{2J} (MHz)	-164.2(58)								
WH1 (MHz)	-627632(1600)	-591586(1900)	-663618(25)	-663885(514)	-664770(75)	-662945(34			
WH _{1J} (MHz)	11.6(17)	-11.6(16)	-53.14(98)	-39.1(14)	-44.9(17)	-20.65(35			
#lines	529	632	545	367	173	128			
σ _κ (cm ⁻¹)	0.00087	0.00102	0.00083	0.00089	0.00172	0.00128			

°					
Generally, the 3v ₇ is too ₆ inversion band. Indeed not be seen. The A←B e 3v ₇ state. sc. 183 , 374-387 (1997)) d parameters from the v ₇	800 K = 0 790 780 780 1	=+ =+	$K_{0}^{2} = \frac{1}{3} = \frac{1}{100} = \frac{1}{1$	v ₆ 3v ⁹ <u>E⁺</u> B <u>B</u> <u>E⁻</u>	:
s of the band previously I to the series and the	K = 2 $F = 2$		3 K = 3 F K = 3 790 - A		:
e the standard deviation	780	3	780		
ve parameters are given	K = 4 B		800 E K = 5 A	E^+	:
stly, the v_6 band can be	790 - A		790 B	\mathbb{V}^{-1}	
d and they are presented		Ħ	E		
transfer of data.	780	-	780	E.	
	Fig. 1. Coupling	between	the symmetric wag	ging, v_{e} and the	
	third overtone of to	orsion, 3v	r ₇ , states.		
			Table 1. Molect from the global 10, J ≤20).	ular parameters fit (K' from 0 to	
	0		A (MHz)	142770.0/21)	
Fin 2 RD (A) and a the UM disc			B (MHz)	23964.08(54)	
Fig. 3. "R ₄ (A) series in the LW diag scheme from the global fit (a) and from the	pram using the energy he local fit for K'=5 (b).		B-C (MHz)	90.9(13)	
a)			D _J (MHz)	0.0590(14)	
			D _{JK} (MHz)	0.4440(85)	
			H _{3TV} (MHz)	-7645(39)	
			H _{STV} (MHz)	-66431(29)	
			v_K (cm ⁻¹)	795.137(47)	
		A (MHz)	139937.7(30)		
		B (MHz)	23624.09(53)		
			B-C (MHz)	1137.1(44)	
			H _{3TV} (MHz)	-1318497(190)	
b)	A		H _{STV} (MHz)	-3082(46)	
			WH ₁ (MHz)	-598833(1300)	
			MALL (MALLa)	1 06/79)	

WH_{Ly} (MHz)

WH₄ (MHz)

WH_{SJ} (MHz)

#lines

σ (cm⁻¹)

293 7(80)

-4999(150)

1.48(15)

3683

0.019

h)

